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One of my long-standing issues with most 
reconstruction courses offered to police is 
the “cookbook” approach.  Essentially, 
instructors hand out a manual with pages 
(and pages) of equations, and then go on to 
explain the parameters in these equations 
and how to calculate the result.  Now, 
cookbook physics is fine - as far as it goes.  
The difficulty is that, without some under-
standing of the physical basis for an 
equation, a method may well be applied in 
an inappropriate situation. Worse, the user is 
limited to just the equations in the book, and 
hence may be unable to find “the one” (or, 
more likely, “the series” of equations) 
necessary for a particular sequence of 
collision events.  Also, some individuals 
have been criticized by the courts for being 
unable to explain the basis for a calculation 
method.  So, the intent here is to try to 
provide the basic physics (and mathematics) 
behind some of the formulae routinely used 
by collision reconstructionists. 
 
In this page from a physicist’s notebook we 
will explore the basis for the slide-to-stop 
equation.  To do so, we will use familiar 
equations and concepts, combining these 
and following through the mathematics to 
provide a rigorous derivation of the resultant 
equations.  In the box at the right, the basic 
equations, their source, and the well-known 
physical principles that we are going to use 
are listed.  So, to battle!  

 

 
From basic principles… 
 
Equations of uniform motion 

2ad = v² – v0² 
 
Newton’s laws of motion 

F = ma 
W = mg 

 
Coefficient of friction 

µ = F/W 
 
Principle of mechanical work 

Work = Fd 
 
Principle of conservation of energy 

Work done = Kinetic energy change 
 
Acceleration due to gravity 

g = 9.81 m/s² 
 

 
Kinetic Energy 
 
If a vehicle is accelerated from a stop, over 
some distance d, it will then be moving at a 
(final) velocity of v.  One of the equations 
for uniform motion tells us that the vehicle’s 
acceleration (a), its distance travelled (d), 
and the final velocity (v) are related by the 
equation:  
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2ad = v²               (1) 
 
(From 2ad = v² – v0², where in this specific 
case the vehicle’s initial velocity is zero, 
v0=0). 
 
Now, comes one of the world’s great 
mysteries (soon to be followed by an even 
greater puzzle.)  For some, apparently 
inexplicable, reason we now decide to use 
the fact that we can maintain the equality 
expressed in equation (1) if we divide each 
side by 2.  For now, let’s not worry about 
why we would do such a thing, let’s just be 
content that dividing both sides of the 
equation by 2 is perfectly sound from a 
mathematical perspective.  So, dividing each 
side of equation (1) by 2 gives:  
 

ad = ½ v²               (2) 
 
Now, let’s go completely wild and multiply 
both sides of equation (2) by m: 
 

mad = ½ mv²               (3) 
 
This seems like a strange thing to do - 
slightly mad in fact!  However, let’s recall 
that our result so far is purely based on one 
of the equations for uniform motion and 
simple mathematical operations that have 
maintained the stated equality. 
 
Looking at the left side of equation (3) we 
can see that ma (the vehicle’s mass times its 
acceleration) is an expression for the tractive 
force (F) that was applied to the vehicle to 
cause it to accelerate.  Newton’s second law 
of motion (F=ma) tells us that instead of ma 
we can write F. Thus, equation (3) becomes:  
 

Fd = ½ mv²               (4) 
 
Now we realize that the left side of this 
equation, the force acting on the vehicle 

multiplied by the distance travelled, is an 
expression for the work done in accelerating 
the vehicle.  Thus, equation (4) says that:  
 

Work done = ½ mv²          (5) 
 
Applying the principle of conservation of 
energy tells us that the work done on the 
vehicle shows up as a gain in the vehicle’s 
energy. Because this is energy associated 
with the motion of the vehicle, it is termed 
kinetic energy [Greek: kineo, to move]. 
 

Gain in kinetic energy  = ½ mv²    (6) 
 
When the vehicle was initially stopped, it 
had no kinetic energy (it wasn’t moving).  
By applying a tractive force (F) over a 
distance (d), an amount of work is converted 
into kinetic energy of  ½ mv².  Thus, when a 
vehicle of mass m is moving at a velocity v 
it has kinetic energy (KE) of ½ mv². 
 

KE = ½ mv²           (7) 
 
This is an important result because it is the 
basis of all collision reconstruction 
equations that use energy.  (Perhaps we 
weren’t so mad after all?) 
 

 

We have derived the 
expression for kinetic energy:

KE = ½ mv² 

Slide to Stop 
 
Probably the most important of such 
equations is that for a vehicle, initially 
travelling at some velocity v, being braked 
hard to a stop.  We assume full braking so 
that friction between the locked wheels and 
the road provides the resistive force. 
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Figure 1.  Slide to a stop 

 Figure 1, we have a vehicle, initially 
velling at speed v, in full braking over a 
pping distance d on a surface with a 
efficient of friction of µ. Applying the 
nciple of conservation of energy to this 
uation gives that: 

ss in kinetic energy = 
Work done by the force due to friction 

Initial KE = ½ mv²           (8) 
 

Final KE = 0                    (9) 

follows that:  

oss in kinetic energy = ½ mv² - 0 

oss in kinetic energy = ½ mv²          (10) 

ork done by the frictional force (F) is the 
oduct of this force and the vehicle’s 
pping distance (d).  

Work done = Fd          (11) 

e coefficient of friction (µ) is the ratio of 
 frictional force (F) and the weight of 

hicle (W): 

µ=F/W          (12) 

Thus, the frictional force is given by:  
 

F = µW          (13) 
 
Since, as a special case of  Newton’s second 
law of motion, the force of gravity acting on 
the vehicle, the vehicle’s weight (W), is 
equal to the mass of the vehicle (m) times 
the gravitational acceleration (g): 
 

W = mg             (14) 
 
Substituting for W from equation (14) in 
equation (13) we have:  
 

F = µmg           (15) 
 
And, substituting for F from equation (15) in 
equation (11) we have:  
 

Work done = Fd =  µmg d          (16) 
 
We can now apply the principle of 
conservation of energy for the vehicle in 
braking to a stop such that the loss in kinetic 
energy given by equation (10) is equal to the 
work done by the force due to friction given 
by equation (16).  Thus, we can write: 
 

Loss in kinetic energy = Work done 
 

½ mv² = µmgd          (17) 
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Solving for the vehicle speed, based on the 
measured stopping distance and coefficient 
of friction gives: 
 

v² = 2 µmgd = 2µgd 
                           m 
 

gd2v µ=  
 
We now apply the fact that the acceleration 
due to gravity, g = 9.81 m/s² so that: 
 

d43.4d62.19d81.92v µ=µ=µ=  
 

d43.4v µ=         (18) 
 
Note that the above equation gives the 
vehicle speed in base units of m/s since the 
stopping distance is measured in m and the 
gravitational acceleration is measured in 
metres per second squared. 
 

 
The use of such units in basic calculations is 
to be encouraged, especially when dealing 
with complex situations where multiple 
stages of vehicle energy dissipation are 
being considered.  One must take great care 
not to mix speeds measured in kilometres 
per hour with relationships, using distances 
in metres and gravitational acceleration in 
metres per second squared, that are 
effectively considering speeds in m/s.      
 
However, normally, at the end of a 
calculation sequence, we wish to provide a 
speed estimate in kilometres per hour since 
these units are readily understood by 
everyone. 
 
 

 

Conversion factor 
       m/s to km/h… 
 
1 km/h = 1000 m / 60 x 60 s 
            = 1000/3600 m/s  
            = 1/3.6 m/s 
 
Consequently: 
 

1 m/s = 3.6 km/h         (19) 
 

Multiplying any result in m/s 
by 3.6 gives the result in km/h.

 
 
Note that the conversion factor of 3.6 is 
easy to remember because it is based on 
there being 3600 seconds in an hour and 
1000 metres in a kilometre. 
 
The inverse factor, 1/3.6 results in a 
recurring decimal value (0.27777…) 
which needs to be rounded for use in 
calculations. Keep it simple – use basic units 

So, we need to apply a conversion factor to 
switch between m/s and km/h. 
 
Using the conversion factor from equation 
(19), in our expression for vehicle speed in 
equation (18) gives: 
 
            d43.46.3v µ×=      

d9.15v µ=    km/h         (20) 
 
This is the simple form of the equation for 
locked wheel braking to a stop.  The 
calculation methodology is a little more 
complex if the vehicle is travelling up or 
down a grade, or if not all the vehicle’s 
wheels are locked.  But, that’s another page 
(or two) in the physicist’s notebook. 
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Change in Kinetic Energy 
 
At this point we might want to go back to 
equation (17) and note that this expression is 
a special case of a loss in vehicle kinetic 
energy due to work done against the force of 
friction under braking.  The special situation 
is that the vehicle comes to a stop such that 
the final kinetic energy is zero.  In a more 
general case, the vehicle may be braked 
from a high speed (v1) to a lower speed (v2), 
in which case we could write: 
 
Loss in kinetic energy = 
          Work done by the force due to friction  
 

½ mv1² - ½ mv2² = µmgd          (21) 
 
Note that, while this equation doesn’t appear 
in the books of formulae normally provided 
to police officers, it is an exceedingly useful 
formulation.  It is a perfectly general 
expression for computing the kinetic energy 
lost when a vehicle is travelling over a 
surface with a given coefficient of friction.  
Any sequence of vehicle decelerations over 
multiple surfaces with different frictional 
properties can be treated by handling the 
motion over each surface using this 
equation.  More importantly, individual 
calculations  for such sequences can be 
combined in order to determine the initial 
speed of a vehicle in such circumstances. 

Braking over Multiple Surfaces 
 
For example, as shown in Figure 2, consider 
a vehicle that slides to a stop by initially 
travelling a distance d1 over a surface with a 
coefficient of friction of µ1 and then, 
subsequently, travels a distance d2 over a 
surface with a coefficient of friction of µ2 .  
Let’s assign v1 as the initial speed of the 
vehicle as it enters onto the first surface, and 
v2 as the speed of the vehicle at the 
boundary of the two surfaces. 
 
The trick in all these more complex 
situations is to start simply, that is begin 
from the point at which the vehicle came to 
rest, and work backwards along the path of 
travel until we compute the vehicle’s initial 
speed.  We can do this in a series of 
individual calculation steps, in which case 
we can handle just about any series of 
events. Or, since most real-world situations 
are not that complex, we can derive a 
formula that will enable us to calculate the 
vehicle’s initial speed from just the 
measured stopping distances and the 
coefficients of frictions for the two surfaces. 
 
For the final portion of the vehicle’s path of 
travel, which effectively is a slide to stop 
from an initial speed of v2, we can use 
equation (17) in the form: 

 

 

 

Work i
 

Figure 2.  Vehicle braking to a stop over two different surfaces 
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½ mv2² = µ2mgd2           (22) 
 
For the vehicle’s path of travel over the first 
surface, we can use equation (21) in the 
form: 
 

½ mv1² - ½ mv2² = µ1mgd1    (23) 
 
Now, in the above equation, we can 
substitute for ½ mv2² from equation (22) to 
give: 
 

½ mv1² - µ2mgd2 = µ1mgd1     (24) 
 
Re-arranging equation 24 gives: 
 

½ mv1² = µ1mgd1 + µ2mgd2    (25) 
 
Simplifying this equation gives: 
 
         v1² = 2 (µ1gd1 + µ2gd2) 
              = 2g (µ1d1 + µ2d2) 
              = 2 x 9.81 (µ1d1 + µ2d2) 
              = 19.62  (µ1d1 + µ2d2)  
 
Taking the square root gives: 
 
        ( )221 11 dd62.19 v µ+µ=            
 
        ( )22111 dd43.4v µ+µ=        (26) 
 
Note that the above equation gives v1 in m/s.  
To convert the speed to km/h we must 
multiple by 3.6 to give: 
 

( )22111 dd9.15v µ+µ=   km/h       (27) 
 
Note that equations (26) and (27) give the 
vehicle’s initial speed in m/s and km/h 
respectively. 
 
It is left for the reader as an exercise to 
determine the equivalent  expression should 

three different surfaces be involved in the 
braked path.  [Hint!  One might recognize a 
pattern between equations (20) and (27).] 
 
Combined Speed Formula 
 
Another great mystery of science is the 
combined speed formula which is usually 
written as: 
 

v² = v1² + v2²       (28) 
 
One application of this equation is for a slide 
to stop calculation over two different 
surfaces.  The method is as follows: 
 
Step 1 – Calculate v2 as a slide to stop using 
equation (20), with the relevant coefficient 
of friction (µ2) and stopping distance (d2), 
with the result in km/h. 
 
Step 2 – Calculate an “equivalent speed”, v1, 
as a slide to stop over the first surface using 
equation (20), with the coefficient of friction 
(µ1) and stopping distance (d1), with the 
result in km/h. 
 
Step 3 – Calculate the vehicle’s initial speed, 
v, using equation (28), the combined speed 
formula, giving the final result in km/h. 
 
Take special note of two things.  Firstly, the 
above uses different notation than we used 
in Figure 2.  In equation (28), v is the 
vehicle’s initial speed, that is the speed as 
the vehicle starts to brake on the first 
surface.  v2 is still the speed of the vehicle as 
it enters and brakes over the second surface.  
Secondly, v1 is not a real speed at all.  It is 
calculated as a slide to stop in a situation 
where the vehicle doesn’t stop!  In fact, on 
the first surface, the vehicle slows down 
from a speed of v to a speed of  v2.  So, why 
does this method work? 
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The answer, of course, is that it depends on 
the magic of physics.  So, let’s analyze the 
situation using basic physical principles and 
see how to derive the combined speed 
formula. 
 
For the vehicle braking over the second 
surface, equation (22) applies: 
 

½ mv2² = µ2mgd2           (22) 
 
This equation will allow us, in Step 1, to 
calculate, v2, the speed of the vehicle as it 
enters the second surface. 
 
And, for the vehicle braking over the first 
surface, a version of equation (23) applies: 
 

½ mv² - ½ mv2² = µ1mg d1     (23) 
 

Note that the first two terms in the above 
equation represent the loss in kinetic energy 
of the vehicle under locked-wheel braking 
across the first surface.  The initial vehicle 
speed is v, and the “final” vehicle speed (at 
the end of the first surface) is v2.   
 
This is also precisely the amount of energy 
that would be dissipated by a vehicle, 
initially travelling at a speed v1, that braked 
to a stop on the first surface.  Thus we can 
write: 
 

½mv1² = µ1mg d1      (29) 
 

The above equation is used in Step 2 to 
calculate the value of v1. 
 
Now, we can substitute for µ1mg d1 from 
equation (29) into equation (23) to give: 
 

½ mv² - ½ mv2² = µ1mg d1 = ½mv1²
 
 

 
Hence: 
 

½mv² - ½mv2²  = ½mv1²    (30) 
 
           ½mv² = ½mv1² + ½mv2²     
 

v²  = v1² + v2²                    (31) 
 

 

The combined speed formula derived !

The “trick” to the method is that v1 is not a 
real speed for the subject vehicle.  It’s 
effectively a measure of the kinetic energy 
dissipated by the vehicle while braking 
across the first surface, expressed as an 
equivalent slide-to-stop speed. 
 
What we have really done is equated the 
actual loss in the vehicle’s kinetic energy in 
braking over a distance d1 on the first 
surface (which, from equation (23), is ½mv² 
- ½mv2²), to the kinetic energy lost by a 
vehicle braking to a stop over a distance d1 
on the first surface (which, from equation 
(8), is ½mv1²).  Both situations involve 
locked wheel braking and require work to be 
done, in the amount of µ1mg d1, by the force 
of friction acting over the braking distance.  
 
The combined speed formula is really a 
statement of the principle of conservation of 
energy.  The initial kinetic energy of the 
vehicle (½ mv²) is dissipated as the loss in 
kinetic energy across the first surface 
(½ mv² - ½ mv2²) plus the loss of kinetic 
energy across the second  surface (½mv2²).   
 
Mathematically, this would be expressed as: 
 

½mv² = (½mv² - ½mv2²) + ½mv2² 
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Our “trick” is to express the first amount of 
kinetic energy loss as ½mv1² (equation 30) 
so that: 
 
           ½mv² = ½mv1² + ½mv2² 
 
and hence: 
 

v²  = v1² + v2²                    (31) 
    

 
Rather than using the concept of combined 
“speeds”, since the method is really that of 
conservation of energy, it would be 
preferable to apply equation (25) directly to 
the braking situation.  Such basic principles 
can be adapted for the solution of any 
energy-based problem as illustrated below. 
 
Example 
 
Everyone knows how to use equations like 
(18) and (26) (or more likely (20) and 27)) 
when we have a vehicle undergoing multiple 
braking events.  The intention of this article 
was not to discuss how to use the equations, 
but rather to provide some knowledge of the 
underlying basic principles of physics that 
can be applied in any appropriate situation.  
So, as an example of the basic method of 
handling vehicle energies over a sequence of 
collision events, let’s use a slightly different 
and somewhat more general crash situation. 
 
A 2000 Ford Taurus was travelling along a 
four-lane, median-divided urban roadway 
when the driver lost directional control.  
Heavy pre-impact brake marks ran from the 
driving lane, across the paved right shoulder, 
leading into an impact with a concrete 

bridge abutment.  The posted speed limit 
was 60 km/h.  The length of the tire marks 
was measured as 25.5 m, and the coefficient 
of friction for the asphalt pavement was 
determined to be 0.7.  There was broad 
crush across the entire front end of the 
Taurus, measuring approximately 40 cm.  
The driver was unrestrained and sustained 
fatal injuries.  The investigating coroner 
wishes to know if speed was a significant 
factor in this crash. 
 The science behind the combined 

speed formula is, therefore, the 
principle of conservation of energy 

A frontal barrier crash test conducted by 
Transport Canada on a similar 2000 Ford 
Taurus produced between 38 and 42 cm of 
crush to the front end of the test vehicle.  
The staged collision was conducted at an 
impact speed of 47.8 km/h.  Due the 
similarities in the vehicle damage profiles, 
we can estimate that the Taurus in the real 
world collision was travelling at approx-
imately 48 km/h at the point at which it 
struck the bridge abutment. 
 
Applying the principle of conservation of 
energy to the pre-impact braking, we can use 
equation (23): 
 

½ mv1² - ½ mv2² = µ1mgd1    (23) 
 
where: 
 
m = vehicle mass 
v1 = initial speed prior to the loss of control 
v2 = speed at the end of the tire marks (i.e. at 
the point of impact with the bridge) 
µ1 = coefficient of friction between the 
vehicle’s tires and the roadway 
g = gravitational acceleration (9.81 m/s²) 
d1 = measured braking distance  
 
Note that equation (23) can be simplified to: 
 
     v1² = 2µ1gd1 + v2² 
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In this equation, our measured and derived 
parameters are as follows: 
 
     µ1 = 0.7 
     g = 9.81 m/s² 
     d1 =  25.5 m 
     v2 = 48 km/h = 13.4 m/s (crash test) 
 
It follows that: 
 
     v1² = 2 x 0.7 x 9.81 x 25.5  +  13.4² 
 
     v1² = 350.2 + 179.6 = 529.8 
 
     238.529v1 ==  m/s 
 
     v1 =  83 km/h 
 
Note that in performing the calculation using 
this form of the equation, we converted the 
barrier equivalent speed from the crash test 
(v2) from km/h to m/s since the equation 
uses basic units (d1 in m and g in m/s²). 
 
Note also that another way of looking at 
equation (23) in this collision situation is as 
an expression of the conservation of energy 
for the vehicle’s motion.  If we rearrange 
equation (23), we have: 
 

½ mv1² = µ1mgd1 + ½ mv2² 
 
The three terms in this equation indicate that 
the vehicle’s initial kinetic energy (½ mv1²) 
is dissipated as the work done against 
friction when the vehicle was braking on the 
asphalt pavement (µ1mgd1) and the energy 
dissipated in crushing the vehicle’s front end 
when it struck the bridge abutment (½ mv2²). 
 
Thus our knowledge of the principle of 
conservation of energy, combined with the 
principle of mechanical work, allows us to 
perform a calculation that will assist in 
responding to the coroner’s question.  

Clearly, the case vehicle was travelling 
above the posted speed limit.  Was driving 
at 83 km/h on a roadway with a 60 km/h 
limit a major factor in this crash?  Perhaps  
we need to consider other factors related to 
the collision in order to know the whole 
story.  While, being one piece of the puzzle, 
speed alone is not always the complete 
answer. 
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