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The basic slide-to-stop equation shows that a 

vehicle’s stopping distance increases 

dramatically (actually quadratically) with 

initial speed.  This has some very interesting 

– and some very dangerous – consequences 

for motor vehicle collisions.   

 

For example, suppose that a vehicle, 

originally travelling at 50 km/h, can just stop 

before hitting an obstruction (another 

vehicle, a tree – or a pedestrian!)  Now 

consider that, if that same vehicle were to be 

travelling at 55 km/h – just 5 km/h faster – 

the impact speed in the inevitable collision 

would be around 30 km/h! 

 

So, it isn’t always possible to “stop on a 

dime”.  Sometimes, considerable time and 

distance is required to avoid involvement in 

serious crashes.  So, perhaps rather than 

stopping on a dime, we need to consider 

being able to stop on a loonie!!  

 

Slide-to-stop 

 

In a previous “Page from a Physicist’s 

Notebook”[1] we reviewed the derivation of 

the slide-to-stop equation using a number of 

basic concepts in physics.   

 

 

 

 

 

 

In particular, we derived two results, namely 

one for the vehicle speed measured in m/s: 

 

d43.4v   m/s         (1) 

 

and the associated version for the vehicle 

speed being measured in km/h: 

 

d9.15v     km/h       (2) 

 

where: 

        = coefficient of friction 

       d = vehicle stopping distance (m) 

 

 

From basic principles… 
 

Definition of speed 

v = d 

             t 

 

Acceleration due to gravity 

g = 9.81 m/s² 

 



 
 

Table 1.  Vehicle stopping distance as a function of speed 

 

 

 

Another way to look at this equation is to 

consider the stopping distance as a function 

of vehicle speed.  Re-arranging Equation 2 

(by squaring both sides, and then dividing 

both sides by 252.8) gives: 

 

                       v²  = 15.9
2
 d 

 

d  = v² / 252.8 

 

The importance of this equation is that 

vehicle stopping distance can be seen to 

vary as the square of the vehicle’s speed.   

 

Thus, there is not a linear relationship 

between stopping distance and speed.  

Rather this is a quadratic function such that 

the stopping distance becomes vastly longer 

with increased speed. 

 

Simple slide-to-stop calculations, as shown 

in Table 1, illustrate the point.  In all cases, a 

coefficient of friction of 0.7 (typical for hard 

braking on a dry asphalt roadway surface) is 

assumed. 

Note that regular (10 km/h) increases in 

initial vehicle speed result in dramatically 

longer stopping distances. 

 

For example, increasing the speed from just 

20 km/h to 30 km/h more than doubles the 

required stopping distance (2.26 m to 5 m). 

 

The quadratic nature of the relationship can 

be seen by examining the stopping distances 

as the vehicle speed is doubled.   

 

At 20 km/h a stopping distance of 2.26 m is 

required.  If the speed is doubled to 40 km/h, 

the stopping distance increases by a factor of 

four to about 9 m.  If the speed is doubled 

again to 80 km/h, i.e. increased four times 

from 20 km/h, the stopping distance 

required is about 36 m, and is therefore 

increased sixteen times over that required 

for 20 km/h. 

 

This quadratic relationship between initial 

vehicle speed and stopping distance is the 

reason why so many drivers experience 



problems in panic braking situations.  They 

think that they should be able to stop in 

much shorter distances than are actually 

required. 

 

However, there is another interesting – 

although extremely dangerous – aspect of 

the quadratic nature of braking distance with 

speed.  This is the residual (impact) speed of 

a vehicle that has insufficient braking 

distance to come to a stop before reaching a 

hazard. 

 

Vehicle speed vs. distance under hard 

braking 

 

Prior to any event in which a driver brakes 

hard in an attempt to avoid a collision, the 

driver (a) needs to recognize that there is a 

hazard, and (b) must take their foot off the 

accelerator and press down firmly on the 

brake pedal.  The combination of the time to 

perceive the hazard and the time to react to 

the situation by physically transferring the 

pedal effort from the accelerator to the 

brake, is the perception-reaction time (tp-r). 

 

During this period of perception-reaction, 

there is no hard braking (the driver hasn’t 

yet reacted by applying the vehicle’s 

brakes).  Consequently, throughout the 

perception-reaction time period, the vehicle 

merrily continues to travel forward at its 

original (constant) speed. 

 

Once the brake pedal is applied hard (in a 

“panic stop”), the vehicle starts to decelerate 

and will eventually come to a halt – 

provided that there is sufficient stopping 

distance.  Should this not be the case, a 

collision will occur and the vehicle will have 

slowed down to its impact speed. 

 

The calculation methodology used to 

determine the distance travelled in such 

circumstances is, therefore, a combination of 

a constant-speed phase (perception-

reaction), and a constant-acceleration phase 

(deceleration due to hard-braking).  

 

We will use the equations governing 

constant speed and constant acceleration to 

examine the distances travelled and the 

vehicle speeds involved in such situations. 

 

(a) Perception-reaction distance 

 

As noted above, before any braking occurs, 

the vehicle travels at constant speed during 

the driver’s perception-reaction time. 

 

Speed is defined as distance travelled 

divided by time taken: 

 

v = d 

                   t 

 

where: 

 v = vehicle speed (m/s) 

 d = distance travelled (m) 

 t  = time taken (s) 

 

Re-arranging this equation (multiply both 

sides by t) gives: 

 

d = v t                        (3) 

    

Suppose that we have a vehicle initially 

travelling at 50 km/h and a driver with a 

perception-reaction time of 1.5 seconds 

 

Equation 3 gives the distance travelled by 

the vehicle in the 1.5 s period for 

perception-reaction: 

 

dp-r = v tp-r 

 

where 

 v = 50 km/h = 50 / 3.6 = 13.9 m/s 

 tp-r =  1.5 s 



dp-r = 13.9 x 1.5 = 20.8 m 

 

So, we can see that, at an initial speed of 

50 km/h, the vehicle will travel almost 21m 

before any braking (deceleration) occurs. 

 

(b) Distance travelled under hard braking 

 

Once the driver applies the brakes hard, in  a 

“panic stop” situation, Equation 2 defines 

the event. 

 

d9.15v     km/h       (2) 

 

However, in this instance, we are interested 

in the distance travelled as the vehicle 

brakes hard and comes to a stop.  So, re-

arranging the above equation gives 

 

[Square both sides] 

 

v
2
 =15.9

2
   d 

 

v
2
 =252.8  d 

 

[Divide both sides by 252.8] 

 

d =        v
2
                          (4) 

                    252.8  

 

where: 

            d  = distance travelled (m) 

            v  = initial speed (km/h) 

   = coefficient of friction 

 

In our example, the vehicle’s initial speed is 

assumed to be 50 km/h.  Let’s further 

assume that the vehicle’s tires and the road 

surface have a coefficient of friction of 0.7 

 

Equation 4 gives the braking distance 

required to bring the vehicle to a complete 

stop from its initial speed of 50 km/h. 

 

dbraking =      v² 

                          252.8  

 

dbraking =       50²          =      2500 

                          252.8 x 0.7          176.96 

 

dbraking = 14.1 m 

 

(c) Total stopping distance 

 

The total required stopping distance is the 

distance travelled during the perception-

reaction period (dp-r) and the distance 

travelled during the hard-braking phase 

(dbraking). 

 

dstopping = dp-r + dbraking 

 

dstopping = 20.8 + 14.1 

 

 dstopping = 34.9 m 

 

Thus, given our assumptions for the 

(average) driver’s perception-reaction time, 

and the available coefficient of friction 

(typical for a dry, asphalt-paved roadway), a 

vehicle initially travelling at 50 km/h will 

require almost 35 m in order for the driver to 

bring the vehicle to a complete stop. 

 

Vehicle travelling at 55 km/h 

 

Now, let’s consider a vehicle, initially 

travelling at 55 km/h, that has only 34.9 m 

of available stopping distance.   

 

Our original vehicle, travelling at 50 km/h, 

could just stop in this distance.  Clearly, the 

faster vehicle cannot stop in the same 

distance.  The question becomes at what 

speed will it still be travelling after it has 

covered the available 34.9 m stopping 

distance? 

 



The same principles of constant speed and 

constant acceleration that we used above 

will apply to our calculation.  However, we 

need to carefully consider the various phases 

of the new calculation.  This is especially 

the case for the braking phase since the 

vehicle won’t actually be in a slide-to-stop 

situation, rather it will slow down from its 

initial speed to its impact speed. 

 

(a) Perception-reaction phase  

 

In order to be able to compare apples with 

apples, let’s keep the driver’s perception-

reaction time at 1.5 s. 

 

The initial speed of the vehicle is now: 

 

    v  = 55 km/h = 55 / 3.6 = 15.3 m/s 

 

Consequently, Equation 3 gives us the 

distance travelled during the driver’s 

perception-reaction period as: 

 

dp-r = v tp-r = 15.3 x 1.5 

 

dp-r = 22.9 m 

 

(b) Braking phase 

 

The vehicle has now travelled along 22.9 m 

of the available 34.9 m of stopping distance.  

At this point, the vehicle is still travelling at 

its initial speed of 55 km/h, just as the driver 

brakes hard. 

 

The available braking distance is now only: 

 

dbraking = 34.9 – 22.9 = 12 m 

 

Note that for this vehicle, travelling at 

55 km/h, and with only 12 m of braking 

distance available before it hits something, 

we do not have a slide-to-stop situation.   

The vehicle is unable to stop in the available 

distance.  There will be a crash and we wish 

to calculate the impact speed, i.e. the final 

speed at the end of the braking phase of the 

event. 

 

Consequently, we need an equation that will 

relate the initial and final speeds along the 

braking path to the actual braking distance.   

 

In the earlier  “Page from a Physicist’s 

Notebook”[1] we noted that the principle of 

conservation of energy applies such that the 

loss in the vehicle’s kinetic energy as the 

vehicle slows down from its initial to its 

final speed is equal to the work done by the 

frictional force over the braking distance.   

 

The equation governing this situation is: 

 

½ mv1² – ½ mv2² = mgd    (5) 

  

where: 

 

   m = vehicle mass (kg) 

   v1 = initial speed (m/s) 

   v2 = final speed (m/s) 

    = coefficient of friction 

   g = gravitational acceleration (9.81 m/s²) 

   d = braking distance (m)  

 

Equation 5 can be simplified to: 

 

 v2² = v1² – 2gd     

 

so that 

 

v2  =  √v1² – 2gd         (6) 

 

In our current situation, the vehicle is 

travelling at an initial speed of 55 km/h and 

undergoes hard braking for a distance of 

12 m so that: 

 

 



 v1 = 55 km/h = 15.3 m/s 

   = 0.7  

g =  9.81 m/s
2
 

dbraking = 12 m 

 

     v2 = √ 15.3² – 2 x 0.7 x 9.81 x 12 

 

     v = √ 233.4 – 164.8 

 

     v = √ 68.6   =  8.28 m/s 

 

     v = 8.28 x 3.6 = 29.8 km/h 

 

Thus, a vehicle initially travelling at 

55 km/h will still be moving at about 

30 km/h at a point where a vehicle initially 

travelling at 50 km/h would have been able 

to come to a complete halt. 

 

Speed-Distance Graph 

 

This result may surprise the lay person.  A 

speed difference of just 5 km/h upstream can 

lead to a speed difference of 30 km/h at the 

end of the same conditions of hard braking!  

But, it shouldn’t come as any surprise to 

those with a little knowledge of the 

underlying physics and mathematics.  Faster 

vehicles travel further during the perception-

reaction phase and require considerably 

greater braking distances than do vehicles 

initially travelling at slower speeds. 

 

The effect can be clearly demonstrated by 

conducting a series of speed-distance 

calculations for a number of different initial 

speeds and charting the results on a graph. 

 

While the individual calculations may be 

performed as indicated above, it is much 

more convenient (and efficient!) to program 

the calculations into a computer spreadsheet 

 

 

 

and have the spreadsheet program graph the 

results.  An example of such calculations is 

shown in Figure 1. 

 

The graphs in Figure 1 each show a vehicle 

travelling at a constant speed for a period of 

1.5 s, followed by a reduction in the travel 

speed as the vehicle decelerates under hard 

braking (for which  = 0.7)  

 

The negative speeds shown at the end of 

each curve should be ignored.  These are a 

mathematical artifact resulting from 

regularly-spaced distances (1 m intervals) 

being used to compute the points on the 

graph while the vehicles actually come to 

rest (speed = 0) at distances that fall 

between the plotted points.   

 

For example, our initial braking calculation 

showed that the total stopping distance for a 

vehicle with an initial speed of 50 km/h was 

34.9 m.  This corresponds to the green curve 

in Figure 1.  The curve crosses the x-axis at 

34.9 m, but points on the graph are only 

plotted for d=34 and d=35 m.  Clearly the 

calculated “speed” of the vehicle at the latter 

point is meaningless since the vehicle has 

already stopped.  The final point is merely 

included on the graph in order to show 

where the vehicle’s speed actually reaches 

zero (i.e. crosses the x-axis). 

 

Note that, once braking commences, the 

vehicle’s speed falls off relatively gradually 

at first, then decreases at an ever-increasing 

rate, with the final large reductions in speed 

occurring close to the end of the stopping 

distance.  This curve is a quadratic function 

for speed vs. distance as we have noted in 

the foregoing equations. 

 

 

 



Figure 1.  Vehicle Speed vs. Distance Under Hard Braking 

 

 

The graph demonstrates the dramatic effect 

of the speed-squared nature of kinetic 

energy.  Note, for example, on the green 

curve (v0 = 50 km/h), that in the first 5 m of 

braking, the vehicle’s speed drops by about  

8 km/h.  In the next 5 m of braking, the 

speed drops by about 12 km/h.  But, in the 

final 5 m of braking, the vehicle’s speed 

drops by approximately 30 km/h! 

 

The vertical black line represents the 

required stopping distance of 34.9 m for a 

vehicle travelling at 50 km/h.  Moving up 

this line to the blue curve shows that, as we 

calculated, a vehicle initially travelling at a 

speed of 55 km/h would still be moving at a 

speed of about 30 km/h after travelling this 

same distance.   

 

The red curve shows that, a vehicle initially 

travelling at 60 km/h, just 10 km/h more 

than our 50 km/h example, would come into 

collision at a speed of about 43 km/h! 

 

Clearly, an increase in initial speed of just a 

few km/h can have a large effect on impact 

speed in the event that a driver has 

insufficient stopping distance available in 

which to bring the vehicle to a halt in the 

face of a collision hazard.   

 



Furthermore, such greater impact speeds can 

have significant consequences for the 

vehicle occupants in crashes with other 

vehicles or fixed objects, and are of even 

greater concern for collisions with 

pedestrians. 

 

Traffic Safety Promotion 

 

The concepts described above have been 

adopted by a number of Australian 

jurisdictions for use in public service 

announcements to promote traffic safety. 

 

In one commercial [2], two vehicles are seen 

approaching a tractor-trailer that is travelling 

at right angles to their path.  One vehicle 

almost comes to a stop before coming into a 

very minor collision with the side of the 

truck.  The other vehicle, initially travelling 

just 5 km/h faster, crashes hard into the left-

rear corner of the trailer. 

 

 

 
 

 

In the second commercial [3], a pedestrian 

(the “pizza-guy”) crosses the road and 

moves into the path of an on-coming vehicle 

– with disastrous results!  A second vehicle, 

moving 10 km/h slower, is able to brake to a 

stop and merely give the pedestrian a scare. 

 

 
 

These videos use the science that we have 

just reviewed to create a “hard-hitting” 

safety message, and graphically demonstrate 

the potential consequences of just a few 

extra km/h of speed. 
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