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This Page from a Physicist’s Notebook is 
the third in a series of related articles on the 
topic of momentum. 
 
In the first article in the series (Momentum 
101 – The principle of conservation of linear 
momentum) we used Newton’s laws of 
motion, and one of the equations for uniform 
motion, to develop the equation for the 
conservation of linear momentum. [1] 
 
The second article (Momentum 102 – Vector 
Analysis and Momentum) implemented a 
graphical solution to the equation for the 
conservation of linear momentum. [2]  In 
particular, we used a vector diagram, drawn 
to scale, to obtain the solution for the initial 
speeds of two-vehicles involved in an angled 
collision. 
 
In the current article, we will consider a 
general form of the vector diagram for a 
two-vehicle collision, and develop a purely 
algebraic solution. 
 
 
Vector Diagram 
 
While the vector diagram will be general in 
nature, note that it is always necessary to 
select a datum line (a zero-degree reference 
direction) for the measurement of the 
vehicle approach and departure angles. 

 
 
Since this reference direction is arbitrary, we 
can make our lives a little simpler by opting 
to set the datum line along the initial 
direction of travel of Vehicle 1, i.e. the 
approach angle for Vehicle 1 will be 0º. 
 
Adopting this convention, the vector 
parallelogram for a two-vehicle collision is 
as shown in Figure 1.  Note that the two 
final momentum vectors, AB and AD (m1V1' 
and m2V2') add together to give the resultant 
vector AC (R).  Similarly, and in order to 
satisfy the principle of conservation of 
momentum, the two initial momentum  

 
From basic principles… 
 
Conservation of linear momentum 
 

 
 
Trigonometrical functions: 
 
      sin θ   =   Opposite 
                    Hypotenuse 
 
       cos θ  =   Adjacent 
                    Hypotenuse 
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vectors, AE and AF (m1V1 and m2V2) also 
add together to give the resultant vector AC. 
 
This is essentially the vector diagram that 
we used previously  (Momentum 102 – 
Vector Analysis and Momentum) to develop 
a graphical solution of the momentum 
equation and to derive the two unknown 
initial vehicle speeds (V1 and V2). 
 
In Figure 1, the parallelogram ABCD is used 
to add the final momentum vectors together 
to give the resultant, while the parallelogram  
AECF adds the initial momentum vectors to 
give the same resultant vector. 
 
We can use the property of vector equality 
to identify that a vector drawn as the line BC 
is the same as the vector AD (i.e. the final 
 

 
momentum of Vehicle 2, m2V2').  The line 
BC has the same length as AD, and points in 
the same direction (i.e. at the departure 
angle for Vehicle 2).  Thus, we can also 
represent the final momentum of Vehicle 2 
as the line BC.  We would then have the 
triangle ABC being used to add the two final 
momentum vectors to give the resultant 
vector AC. 
 
Similarly, the vector EC is the same as the 
vector AF, the initial momentum of 
Vehicle 2 (m2V2).  Thus, vector triangle 
AEC could be used to add the two initial 
momentum vectors to give the resultant AC. 
 
The vector diagram, revised to use the two 
vector triangles, ABC and AEC, is shown in 
Figure 2. 
 

 
Figure 1  Vector parallelogram for a two-vehicle collision 
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Note that, in Figure 2, we have the two final 
momentum vectors AB and BC (m1V1' and 
m2V2') adding together to give the resultant 
vector AC, and the two initial momentum 
vectors AE and EC (m1V1 and m2V2) adding 
to give the same resultant AC. 
 
By adding a few construction lines we can 
identify some right-angled triangles that are 
associated with the vector diagram, notably 
AGC, AHB, EGC and BFC. 
 

 
 
 

 
 
 
The rationale for doing this may not be 
immediately apparent.  But, recall that our 
present aim is to develop an algebraic 
solution to the conservation of momentum 
equation.  You may also remember that in 
the second article of this series, we noted 
that the solution to the single equation in 
which there were two unknowns was only 
possible because we were able to work in 
two dimensions (x and y), thus taking into 
account both the magnitudes and directions 
of the momentum vectors.   
 
The algebraic solution requires the same 
process.  We need to develop two equations, 
one along the zero-degree reference line 
(effectively our x-axis), and one in a 
perpendicular direction (our y-axis).   
 

 
 

Figure 2  Vector triangles for a two-vehicle collision 

 
But, why would we do that? 
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These will provide two simultaneous 
equations for the two unknown vehicle 
speeds (V1 and V2) from which we will be 
able to derive the required solutions. 
 
What we are going to do is look at the lines 
AG and GC, and see how the lengths of 
these lines are made up from components of 
various momentum vectors.  To do this we 
will need to apply our knowledge of the 
sines and cosines of angles in right-angled 
triangles. 
 
Initially, we are going to consider the length 
of the line GC.  Looking at triangle EGC, 
the sine of angle θ2 is defined as: 
 
      sin θ2  =  GC    (opposite/hypotenuse) 
                      EC 
 
so that: 
 
      GC = EC sin θ2 
 
But, the length of EC is just the magnitude 
of the initial momentum of Vehicle 2 
(m2V2), so that: 
 
      GC = m2V2 sin θ2          (1) 
 
We can also consider the length of this line 
to be made up in a different way.  In 
particular, it is the sum of the lengths of the 
lines HB (the same as GF) and FC.  Thus, in 
equation 1: 
 
      GC = m2V2 sin θ2 = HB + FC 
 
      m2V2 sin θ2 = HB + FC        (2) 
 
Now, in triangle AHB: 
 
      sin θ1' = HB    (opposite/hypotenuse) 
                    AB 

 
      HB = AB sin θ1' 
 
where AB is the final momentum of 
Vehicle 1 (m1V1') so that: 
 
      HB = m1V1' sin θ1'          (3) 
 
Similarly, in triangle BFC: 
 
      sin θ2' = FC    (opposite/hypotenuse) 
                    BC 
 
      FC = BC sin θ2' 
 
where BC is the final momentum of 
Vehicle 2 (m2V2') so that: 
 
      FC = m2V2' sin θ2'          (4) 
 
Substituting equations 3 and 4 into 
equation 2 gives: 
 
m2V2 sin θ2 = m1V1' sin θ1' + m2V2' sin θ2' 
 
Hence: 
 
   V2 = m1V1' sin θ1' + m2V2' sin θ2'      (5) 
                           m2 sin θ2 

 
Equation 5 provides a method of calculating  
V2, the initial speed of Vehicle 2, from the 
masses, run-out speeds, and departure angles 
of the two vehicles, together with the 
approach angle of Vehicle 2. 
 

 
 

Half-way there ! 
 

We can calculate V2 
using Equation 5 
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Now, let’s take a look at the length of the 
line AG in Figure 2 and adopt similar 
techniques to those used above.  Note that 
we can consider the length of this line to be 
made up in two ways. It is the sum of the 
lengths of lines AE and EG.  It is also the 
sum of the lengths of lines AH and BF (the 
same as HG).   
 
Thus: 
 
      AE + EG = AH + BF          (6) 
 
Now, the length of AE is just the magnitude 
of the initial momentum of Vehicle 1 (m1V1) 
so that: 
 
      AE = m1V1          (7) 
 
In addition, EGC is a right-angled triangle 
where the cosine of θ2 is: 
 
      cos θ2  =  EG    (adjacent/hypotenuse) 
                      EC 
and so: 
 
      EG  =  EC cos θ2 
 
But, EC is the magnitude of the initial 
momentum of Vehicle 2 (m2V2), so that: 
 
      EG  =  m2V2 cos θ2          (8) 
 
Substituting equations 7 and 8 into 
equation 6 gives: 
 
      m1V1 + m2V2 cos θ2 = AH + BF      (9) 
 
Looking at triangle AHB: 
 
      cos θ1'  =  AH 
                       AB 
 
      AH = AB cos θ1' 
 

where AB = m1V1' so that: 
 
      AH = m1V1' cos θ1'          (10) 
 
Similarly, in triangle BFC: 
 
      cos θ2'  =  BF 
                       BC 
 
      BF = BC cos θ2' 
 
where BC = m2V2' so that: 
 
      BF = m2V2' cos θ2'          (11) 
 
Substituting equations 10 and 11 into 
equation 9 gives: 
 
m1V1 + m2V2 cos θ2 =  
          m1V1' cos θ1' + m2V2' cos θ2'  
 
It follows that: 
 
m1V1 = m1V1' cos θ1' + m2V2' cos θ2' 
                     - m2V2 cos θ2   
 
V1 = m1V1'cos θ1'+m2V2'cos θ2'-m2V2 cos θ2 
                                   m1 
                                                              (12) 
 
Wow!  That’s a lot of mathematics.  But, 
note that we  really only have to understand 
how to use the sine and cosine of an angle.  
Everything else is simple addition, 
subtraction, multiplication and division. 
 
So, once we have obtained the initial speed 
of Vehicle 2 (V2) from equation 5, we can 
then use equation 12 to calculate the initial 
speed of Vehicle 1 (V1) since we know the 
masses, run-out speeds, and departure angles 
for both vehicles, and we also know the 
approach angle for Vehicle 2.   
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Case Study 
 
In the second article in this series we 
analyzed a real-world collision using the 
graphical solution for the conservation of 
linear momentum.  The crash involved the 
front of a 2000 Chevrolet Impala four-door 
sedan (Vehicle 1) striking the left side of a 
1998 Saturn SL2 (Vehicle 2) as the two 
vehicles travelled into a four-leg intersection 
(Figure 3). 
 

 
 
 
Recall that, for this case study, we selected 
due east as the zero-degree reference line for 
the measurement of the approach and 
departure angles of the vehicles, i.e. our 
datum is along the initial travel direction for 
Vehicle 1 (θ1 = 0°). 
 
This measurement convention is the same as 
that used to derive the above-equations.  We 
can, therefore, apply these equations to our 
real-world crash in order to determine the 
two initial vehicle speeds, V1 and V2. 
 
The data obtained from the subject collision 
investigation were as follows: 
 
Vehicle 1 (Chevrolet Impala) 

m1 = 1710 kg 
V1

' = 51 km/h 
θ1

' = 329° 
θ1 = 0° 

 
Vehicle 2 (Saturn SL2) 

m2 = 1160 kg 
V2

' = 51 km/h 
θ2

' = 321° 
θ2 = 270° 

 

 
Conservation of linear momentum 

 
 

V2 = m1V1' sin θ1' + m2V2' sin θ2'  
                                                           m2 sin θ2 

 
 

V1 = m1V1'cos θ1' + m2V2'cos θ2' - m2V2 cos θ2  
                                                                m1 

 
 

Figure 3  Collision Schematic 
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Substituting these values into equation 5, 
allows us to calculate the initial speed of 
Vehicle 2: 
 
V2 = m1V1' sin θ1' + m2V2' sin θ2' 
                        m2 sin θ2 
 
V2=1710x51xsin(329°)+1160x51xsin(321°) 
                      1160xsin(270°) 
 
V2=87210x(-0.5150) + 59160x(-0.6293) 
                      1160x(-1) 
 
V2= -44916.5 –37230.6 
                -1160 
 
V2= -82147.1 
         -1160 
 
V2= 71 km/h 
 
[Note that the sine of any angle in the range 
270 through 360 is negative.  We end up 
with -82147 being divided by -1160, the 
result being +71 km/h since effectively we 
have: (-1 x 82147)/(-1 x 1160) and the two 
-1’s cancel out.] 
 
Now that we have calculated V2, we can use 
equation 12 to determine V1 
 
V1 = m1V1'cos θ1'+m2V2'cos θ2'-m2V2 cos θ2 
                                   m1 
 
V1 = { 1710x51xcos(329°) + 
        1160x51xcos(321º) - 
        1160x71xcos(270º) } 
        / 1710 
 
V1 = { 87210x0.8572 + 59160x0.7771 
         - 82360x0 } / 1710 
 
V1 = { 74753.6 + 45976.0 -0) }/1710 
 
 

V1 = {120729.6 }/1710 
 
V1 = 71 km/h 
 
So, our algebraic solution gives the initial 
speeds of the vehicles as: 
 
      V1 = 71 km/h 
 
      V2= 71 km/h 
 
As might be expected, these are precisely 
the same values obtained from the graphical 
solution. 
 
 
Graphical vs. Numerical Analysis 
 
We have now seen that the graphical and 
algebraic solutions to the conservation of 
linear momentum both provide the same 
answers.   
 
We noted previously that a vector diagram, 
drawn to scale, provides a very direct 
representation of the subject collision such 
that it is difficult to make a mistake in the 
process of obtaining a solution using the 
graphical method. 
 
In contrast, the mathematical equations we 
have developed here will give answers based 
on whatever data we input.  It should be 
obvious that, given the complexity of the 
equations, and the strict convention used to 
determine the various angles involved, we 
need to take considerable care with the 
algebraic solution.  In particular, we need to 
ensure that the approach and departure 
angles are identified and measured correctly. 
We must pay careful attention to the 
individual parameters in the different terms 
of the equations in order that the correct 
term is matched to the correct piece of data. 
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Furthermore, some care must be taken with 
the signs (especially the negative sign in the 
last term of the numerator in equation 12). 
 
However, the good news is that, if we 
strictly adhere to the convention for the 
measurement of the approach and departure 
angles (0-360 degrees from the datum), the 
equations will automatically take care of 
whether the sines and cosines of the angles 
are positive or negative. 
 
And, the really good news is that the 
algebraic method, because it is based on 
mathematical formulae, lends itself to a 
computer-based solution. 
 
 
Computer Spreadsheet 
 
Spreadsheet programs, such as Microsoft 
Excel 1, Lotus 1-2-3 2, and Quattro Pro 3, 
provide us with the ability to enter formulae 
into individual cells of the spreadsheet. 
 
It has been my experience to date that many 
police officers are unfamiliar with the use of 
spreadsheet programs.  This is unfortunate, 
since spreadsheets provide a flexible 
platform for easily conducting a wide range 
of collision-related calculations.  
Furthermore, because of their ability to 
almost instantly recalculate values based on 
changed parameters, they lend themselves 
exceptionally well to “what-if” calculations, 
uncertainty estimation, and sensitivity 
analysis using bracketed values of measured 
quantities.  In this section, we will explore in 
detail a specific spreadsheet designed to 
perform the calculations required for the 
momentum analysis of a two-vehicle crash. 
 
                                                 
1 http://en.wikipedia.org/wiki/Microsoft_Excel 
2 http://en.wikipedia.org/wiki/Lotus_1-2-3 
3 http://en.wikipedia.org/wiki/Quattro_Pro 

The commands used in spreadsheet 
formulae can be very simple, such as adding 
the contents of a number of cells to provide 
a total, as is frequently used in financial 
accounting.  But, the programs are quite 
sophisticated so that, in addition to 
performing simple mathematical 
calculations, they have many built-in 
functions, such as square roots, sines and 
cosines.  Furthermore, one can set up certain 
cells to accept basic data, and place 
formulae in other cells to compute both 
intermediate and final results.   
 
As noted earlier, the really good news is that 
if we enter different values into the cells 
containing the base elements, the program 
rapidly updates the entire spreadsheet, 
performing all the necessary calculations, 
and determining the new values of all the 
cells containing formulae. 
 
Since spreadsheets know about addition, 
subtraction multiplication and division, and 
even square roots, sines and cosines, they 
are great tools for calculating initial vehicle 
speeds using the equations for the 
conservation of linear momentum that we 
have developed above. 
 
An example of such a spreadsheet, set up 
using Microsoft Excel, is shown in Figure 4.  
Note that certain cells are highlighted in 
light grey to indicate that these cells are for 
the user to input data.  For ease of reference, 
the columns in spreadsheets are identified 
with alphabetic characters (A, B, C…) while 
the rows are numbered (1, 2, 3…) 
 
The spreadsheet is designed for general use.   
Cells B3 through B5 accept text strings 
designating the name of the recon-
structionist, the case number, and a date.  
This allows us to customize each version of 
the spreadsheet with specific information 
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Figure 4.  Computer spreadsheet for conservation of momentum calculations 
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about the subject collision and makes the 
spreadsheet self-documenting. 
 
The next set of rows in the spreadsheet 
(Rows 9-17) are used to accept the crash 
data – the vehicle identifier (year, make and 
model), vehicle mass, coefficient of friction, 
stopping distance, departure and approach 
angles – for each of the involved vehicles.  
Note that the units to be used for these 
parameters are specified where appropriate.   
 
For example, the vehicle stopping distance 
is to be entered in metres, since the 
subsequent calculation of run-out speed 
(V=15.9√µd) takes the form to calculate 
speed in km/h if the stopping distance is 
measured in metres.  Similarly, the approach 
and departure angles are to be specified in 
degrees.  But, take particular note that the 
approach angle for Vehicle 1 is not to be 
entered.  This value (in cell C17) is set to 
zero since this was the basic assumption 
used to derive our momentum equations. 
 
Row 19 contains two cells with the first 
calculated results.  Cells C19 and F19 
compute the run-out speeds of Vehicle 1 and 
Vehicle 2 respectively.  The note on row 29 
shows the formula that the spreadsheet uses 
for the calculation of the magnitude of the 
final velocity of Vehicle 1.  The spreadsheet 
uses the square root function in the form: 
 

V1 = 15.9*SQRT(C13*C14) 
 
Compare this to our slide-to-stop equation: 
 

V1 = 15.9√µd 
 
In the spreadsheet’s formula, cell C13 
references the value of the coefficient of 
friction that applies to the run-out motion of 
Vehicle 1, while C14 is the vehicle’s 
stopping distance from the point of impact 

to its final resting position.  The asterisk 
indicates that multiplication is to be 
performed, while SQRT is the square root 
function that applies to the terms inside the 
brackets. 
 
Cell F22 contains the formula to calculate 
the initial speed of Vehicle 2.  This is 
essentially our equation 5.  The actual 
formula used in the spreadsheet is shown in 
the note on row 37.  Note that there are 
multiple sets of brackets to ensure that the 
various parameters are processed in the 
correct order.  Careful inspection of this 
spreadsheet formula will show it to be 
precisely the same as equation 5.  For 
example, the first term in equation 5 is: 
 

m1V1' sin θ1' 
 
while the first term to be evaluated in cell  
F22 of the spreadsheet is: 
 

C11*C19*SIN(RADIANS(C16)) 
 

By cross-referencing the terms, we can see 
that:  
 

Cell C11 references m1, the mass of 
Vehicle 1. 
 
Cell C19 references V1', the calculated 
run-out speed of Vehicle 1. 
 
Cell C16 references θ1', the departure 
angle for Vehicle 1.   

 
But, note that the angle, measured in 
degrees, is converted to radians using the 
RADIANS function before the sine of the 
angle is computed. 
 
         θ1' = 329º 
 

RADIANS(329º) = 5.742 radians 
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This is necessary because, in Excel, the SIN 
function takes the angle argument in radians 
rather than in degrees. 
 

SIN(5.742 radians) = -0.515 
 
Thus, we can see that the first term of the 
formula used in the spreadsheet is precisely 
equivalent to the first term of equation 5.  
Similarly, we could show that all of the 
subsequent terms are precisely matched so 
that the formula used in cell F22 is a true 
representation of equation 5.  Thus, cell F22 
will calculate the initial speed of Vehicle 2. 
 
Through a similar process to that noted 
above, we could show that the formula used 
in cell C22 is equivalent to equation 12 and 
hence calculates the initial speed of 
Vehicle 1. 
 
Note that the cells C22 and F22 are labeled 
(cell B22) as “Initial velocity”.  Since we are 
using conservation of momentum, and 
conducting vector analysis, it is appropriate 
to use this terminology.  However, if we 
state that we are providing velocity, we must 
give both the speeds (the magnitudes of the 
velocity vectors) and the associated 
directions. 
 
In consequence, the spreadsheet notes both 
the initial speed of Vehicle 2 (cell F22) and 
its direction (cells F23 and G23).  The 
direction is given as being “@ 270 degrees” 
(to the zero-degree reference line).  This is 
achieved simply by using an @ symbol in  
F23, and by restating the vehicle’s approach 
angle in G23 using the formula: 
 

=TEXT(F17,"000")&" degrees" 
 
The TEXT function is first used to convert 
the number of degrees for the approach 
angle to a three-character string (“270”).  

The concatenation operator (&) is then used 
to combine this text string with a space and 
the word degrees   
 
A similar procedure is used to specify “@ 
000 degrees” in cells C23 and D23 as the 
approach direction for Vehicle 1. 
 
So, we now have a fully-developed 
spreadsheet that will calculate the run-out 
speeds of the vehicles based on the 
coefficients of friction and stopping 
distances provided, and then go on to 
compute the two initial vehicle speeds based 
on vector analysis of the momentum 
diagram.  The spreadsheet is essentially self-
documenting since we can include specific 
information to identify a particular case, and 
each of the input data fields is labeled, as are 
the cells containing the calculated values.  In 
addition, the formulae used for the 
numerical calculations are included on the 
spreadsheet in the “notes” section. 
 
Note that we can readily reuse the 
spreadsheet, either by copying it to a new 
file and then modifying the latter to fit a 
different case, or by copying it to a new 
worksheet within the spreadsheet, and 
maintaining separate worksheets for 
different cases.   
 
Creating a new worksheet, based on the 
initial worksheet, is achieved by right-
clicking the mouse on the “Momentum” tab 
at the bottom of the sheet, and selecting 
“Move or Copy”.  Choose “Move to end” 
and click on the checkbox marked “Create a 
copy”.  This generates a second worksheet, 
named “Momentum (2)”.  This sheet can be 
renamed by simply right-clicking on its tab 
and selecting the “Rename” option.  The 
second worksheet can then be modified by 
changing the identifiers and input variables 
to suit a new collision scenario. 
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In-line Collisions 
 
If we try to use the spreadsheet (or try to 
manually solve equations 5 and 12) when 
both approach angles are zero, we will 
encounter a #DIV/0! error.  This indicates 
that we are trying to divide by zero which is 
not allowed since it would generate an 
infinite value.  Clearly, the input parameters 
are in violation of the assumptions used for 
our momentum analysis.   
 
The reason is clear; we have an “in-line” 
collision, normally either a head-on or a 
rear-end impact, where both vehicles are 
initially moving along the same straight line.  
Since all the initial momentum is directed 
along the x-axis, all the final momentum 
must also be directed along the x-axis.  With 
only one direction to work with, it is not 
possible to solve the momentum equation 
for two unknown initial velocities.  We need 
either a second equation, or we need to 
know one of the initial vehicle speeds. 
 
Two equations can be obtained by 
considering both conservation of momentum 
and conservation of energy as these apply to 
a given collision.  However, the latter 
requires accounting for the energy used in 
crushing the vehicle structures, a topic that 
is worthy of another page (or two) from a 
physicist’s notebook! 
 
Knowledge of one of the initial vehicle 
speeds may come from pre-crash data 
captured by an on-board event data recorder 
(EDR), or from a reliable witness to the 
motion of one of the vehicles prior to the 
collision.  If such an estimate is available, 
momentum can be used to determine the 
initial speed of the partner vehicle in the 
collision. 
 

Another, not-uncommon situation, provides 
a special case where a simple formulation of 
conservation of momentum can be used.  
This is the case where one vehicle is 
stationary prior to the collision.  Typically, 
this will occur in a rear-end crash where one 
vehicle is stopped at a traffic light or a stop 
sign.  Sometimes, a good approximation of 
one vehicle having no initial velocity can be 
the case in side-impacts where one vehicle 
commences a left turn, or has just pulled out 
from an intersecting road, and enters the 
path of an on-coming vehicle. 
 
The basic equation for conservation of 
momentum is: 
 

m1V1 + m2V2 = m1V1' + m2V2'     (13) 
 

If we consider that V2, the initial speed of 
Vehicle 2, is zero, this equation reduces to: 
 

m1V1 = m1V1' + m2V2' 
 
so that: 
  

     V1 = m1V1' + m2V2'          (14) 
                                m1 

 
Frequently, in such cases, the two vehicles 
reach a common velocity immediately after 
impact.  This is particularly obvious when 
the two vehicles become locked together on 
impact, and remain engaged as they move to 
the final rest position.  If we denote the 
common, post-impact velocity as Vc, then: 
 

V1' = V2' = Vc 
 
and equation 14 becomes: 
 

V1 = (m1 + m2) Vc          (15) 
                            m1 
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In this special case, where the initial speed 
of Vehicle 2 is zero, and the two vehicles 
both have the same post-impact speed of Vc,  
we can see that the calculation for the initial 
speed of Vehicle 1 is based on a simple 
mass ratio. 
 
 
Conclusion 
 
This article has provided a rigorous 
mathematical analysis of a generic 
momentum diagram for a two-vehicle, 
angled collision and has developed 
equations to calculate the two unknown 
initial vehicle speeds. 
 
While these equations can be readily solved 
using a calculator, we have seen that a 
computer spreadsheet provides a simple 
method of performing the momentum 
calculations for any given case.  The same 
spreadsheet can also be readily adapted for 
similar cases. 
 
It should also be evident that we could use 
similar techniques to those described to 
develop other spreadsheets for more 
complex situations, for example, where a 
vehicle slides to a stop over multiple 
surfaces (different friction coefficients), or 
where braking efficiency terms must be 
introduced for non-locked wheel braking. 
 
Note that the equations developed here to 
solve momentum problems are predicated 
on vehicle momenta occurring in two 
dimensions.  In particular, our solution, 
based on Figure 2, effectively considered the 
total momentum of the two vehicles along 
the x-axis (vector AG), and the total 
momentum of the two vehicles along the y-
axis (vector GC), as these combined to 
produce the total resultant momentum 
(vector AC).  It was our ability to solve the 

vector equation in two dimensions that 
provided values for the two unknown, initial 
vehicle speeds. 
 
Where the vehicle momenta act along the 
same straight line (e.g. along the x-axis) we 
have an in-line collision.  In such a case, the 
equations developed for a two-dimensional 
problem are no longer appropriate and a 
different methodology must be applied.   
 
In the special case where one vehicle is 
initially stationary, and both vehicles reach a 
common post-impact speed, we have seen 
that a simple mathematical formulation of 
the equation for conservation of momentum 
can be applied. 
 
In other, more general situations, if an 
estimate of one vehicle’s speed is available 
from some source, momentum alone 
(equation 13) may be used to obtain the 
speed of the second vehicle.  Otherwise, the 
equation for the conservation of momentum 
must be combined with the equation for the 
conservation of energy in order to obtain  
both vehicle speeds.  But, as noted earlier, 
the latter is another topic for a page from a 
physicist’s notebook! 
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