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In a previous Page from a Physicist’s Note-
book (Momentum 101 – The principle of 
conservation of linear momentum) [1] we 
saw how the application of Newton’s laws 
of motion to a vehicle-to-vehicle crash 
resulted in the derivation of the equation for 
the conservation of linear momentum (see 
box at right).   
 
It was also noted that, because momentum is 
the product of a scalar quantity (vehicle 
mass) and a vector quantity (vehicle 
velocity), momentum itself is a vector.  And, 
since both the magnitude (size) and direction 
of vector quantities are important, we also 
discovered that working with this equation 
required the application of vector analysis 
rather than simple algebra. 
 
Anyone who was still awake after reading 
through Momentum 101 may also have 
realized that we have a seemingly strange 
situation – one equation, with two 
unknowns.  We can readily determine the 
masses of the two vehicles (m1 and m2), and 
we can usually estimate the two separation 
velocities (V1' and V2').  But, the initial 
velocities of both vehicles (V1 and V2) are 
normally unknown.  We generally want to 
know the vehicle speeds!  So, how is it 
possible to solve a single equation when two 
parameters are unknown?   
 

 

 
From basic principles… 
 
Conservation of linear momentum 
 

 

 
The answer is that this is a vector equation, 
and we can look at the conservation of 
momentum in two perpendicular directions 
(x and y) which effectively gives us two  
equations and two unknowns that can be 
solved simultaneously. 
 
But, there’s no free lunch here.  While we 
only have to deal with a single equation, we 
do have to work in two dimensions, and will 
need to provide a bunch of data from the 
crash to identify the vehicle run-out speeds, 
and the approach and departure angles of 
both vehicles into and out of the collision.    
 
In this page from a physicist’s note-book, 
we will look at the properties of vectors, 
how to add them together to determine a 
resultant vector, and, in particular, how to 
find the initial speed of each of two vehicles 
involved in a vehicle-to-vehicle crash. 
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Vectors and Scalars 
 
We know that vectors have two important 
properties – magnitude (size) and direction.  
In the case of velocity, we refer to the 
magnitude of this vector as speed, and we 
often specify the associated direction in 
terms of the compass points.  For example, 
the classic first sentence of a motor vehicle 
accident report starts something like: 
“Vehicle 1 was northbound at 50 km/h.”  
Note that both the speed (50 km/h), and the 
direction (north), of the vehicle have been 
indicated so that the vehicle’s velocity has 
been fully specified.   
 
[Note also that we can specify the same 
velocity as 13.9 m/s in a northerly direction.  
It’s the combination of the speed, and the 
direction, that defines a vector quantity, not 
the units used to measure speed, which is the 
vector’s magnitude.] 
 

 
A variety of other collision-related 
parameters can be seen to be vectors.  For 
example, collision force may be applied to 
the front of a vehicle and cause it to slow 
down.  Conversely, the force may be applied 
to the rear of the vehicle and cause it to 
speed up.  Similarly, we think of 
acceleration taking place in a forward 
direction when a vehicle speeds up, or 
rearwards (deceleration) when the vehicle 
slows down.  Since direction is obviously 
important for considering the nature of both 
force and acceleration, in addition to how 
great a quantity of each is involved in a 
given situation, it is clear that both force and 
acceleration are vector quantities.  
 

Conversely, scalars such as vehicle mass 
have no associated direction.  For example 
the 1150 kg mass (curb weight ∗) of a 1998 
Ford Escort station wagon merely tells us 
how much material (steel, glass, plastic, 
fuel, oil, and coolant) was delivered to the 
vehicle’s purchaser.  The total mass of a 
collision-involved vehicle will include this 
original mass, plus the mass of any 
occupant(s), and that of any cargo.  But, we 
are still only considering the total amount of 
material (of various types) comprising one 
of the objects involved in the crash.  There is 
no direction associated with this “lump” of 
matter. 
 
 
Vector Analysis 
 
The equation for the conservation of linear 
momentum tells us that the sum of the 
vehicle momenta before the crash is equal to 
the sum of the momenta after the crash.  
Clearly, in order to work with this equation,  
we need to know how to add two 
momentum vectors together.  And, we also 
need to know how to represent momentum, 
as the product of a mass and a velocity, in a 
vector format. 

Magnitude and direction 
specify a vector (not units !) 

 
While these requirements sound  
complicated, it turns out that we already 
know how to do both.  We just don’t think 
of a commonly used process as an exercise 
in vector analysis.  But we will in a few 
moments! 
 

                                                 
∗  Note that, in this context, “curb weight” is a 
misnomer.  Weight is a force; it’s the gravitational 
attraction of the earth acting on the vehicle, and thus 
should be expressed in Newtons (N) rather than 
kilograms.  However, curb weight is the term in 
common usage for the more scientifically accurate 
term of mass.   
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Suppose that we were to get into our car and 
drive 30 km due east.  Then, let’s suppose 
that we turn left and drive for a further 
40 km due north.  We will have travelled a 
total distance of 70 km but, as the crow flies, 
we are only 50 km from home.  We can 
readily see that this is the case if we consult 
our map (Figure 1). 
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Note that we keep specifying distances 
travelled in given directions.  Distance is a 
scalar quantity, measured in kilometres (or 
metres if we prefer).  If we associate a 
particular distance (a scalar), with a specific 
direction, we have specified a vector 
quantity, this vector being known as 
displacement.  In our two-dimensional world 
(for our purposes, we can ignore the vertical 
direction), displacement is a measure of the 

M

ome was at point A.  Initially we travelled 
0 km east to point B, and then 40 km north 
o arrive at point C.  Effectively, we have 
ravelled 50 km to the east of north and, had 
here been a road in this specific direction, 
t’s clear that we could have travelled 
irectly from point A to point C. 

absolute change in position between an 
origin and a destination. 
 
So, our mapping exercise shows us how to 
represent vectors.  Our initial displacement 
from point A to point B is represented by the 
black arrow AB.  Note that the arrow has a 
scaled length that represents the size of the 
displacement vector, i.e. the distance of 
30 km, and the arrow points in the direction 
of the displacement, i.e. due east.  Similarly, 
our second displacement of 40 km due north 
is represented by the blue arrow BC.   
 
Our resultant displacement is the net sum of 
the two displacements.  In other words, 
going from point A to point B, and then 
from point B to point C, has precisely the 
same effect, in terms of our resulting 
position, as if we had gone directly from 
point A to point C. 
 

Figure 1  Vector Triangle This shows us how to add two vectors to 
determine the resultant vector.  We draw the 
first vector to scale, and point it in the right 
direction.  We draw the second vector to 
scale, starting with its tail at the head of the 
first vector, and point the second vector in 
the direction in which it acts.  The resultant 
vector is then the line between the origin 
(the tail of the first vector) and the final 
destination (the head of the second vector). 
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In vector terminology we would write: 
 
 
 

 
No
is 
fo
tha
ve
 
Di
is 
no
rea
wh
mV
so
let
pr
 
• 

 
• 

 
• 

 
W
ex
str
the

direction along which the vector acts.  It 
follows that any two lines of the same 
length, and pointing in the same direction, 
represent equal vectors. 

Mo
 
 
 

te that the left side of the above equation 
very similar to the left side of the equation 
r the conservation of linear momentum in 
t each represents the addition of two 

ctors. 

splacement (distance in a given direction) 
a fairly easy concept to grasp since, as 
ted above, it’s really the basis of map 
ding.  However, it probably isn’t obvious 
at is meant by a momentum vector of 
.  So, before we pursue a graphical 

lution for conservation of momentum, 
’s first take a look at some other useful 
operties of vectors. 

Equality - Two vectors are equal if they 
have the same magnitude and point in 
the same direction. 

Addition - All vectors involved must 
have the same units.  Vectors may be 
added by using either a vector triangle or 
a parallelogram. 

Scalar Multiplication - Multiplication of 
a vector by a positive constant produces 
a vector in the same direction but with a 
different length (different magnitude).  
Multiplication by a negative constant 
produces a vector with a different length 
and pointing in the opposite direction.  

e can see that these rules make sense.  For 
ample, a vector may be  represented by a 
aight line, drawn to scale to accommodate 
 vector’s magnitude, and pointing in the 

 
We can’t add apples to oranges, and the 
same goes for vectors.  We can only add 
vectors of the same kind – displacement 
vectors, or velocity vectors, or momentum 
vectors, or…   
 
In Figure 1, we saw how to add two vectors 
using a vector triangle (AB +BC = AC).  We 
can use the property of vector equality to see 
how to add vectors using a parallelogram.   
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In Figure 2, note that the vector AD is equal 
to the vector BC from Figure 1.  Both 
vectors represent displacements of 40 km to 
the north.  We can add vectors AB and AD 
by constructing a parallelogram, using the 
two vectors as adjacent sides.  The sum of 
the two vectors (the resultant) is then the 
diagonal of the parallelogram, AC. 
 
The property of scalar multiplication 
indicates that, since vector AB represents a 
distance of 30 km to the east of the origin, 
then 2 x AB would be a vector twice as long 
as AB, also pointing to the east.  This new 
vector would, therefore, represent a 
displacement of 60 km to the east of the 
origin, which makes sense as being twice 
(2x) the vector AB. 
 
In the same way, suppose we had a vehicle 
with a post-impact velocity of 13.9 m/s in an 
easterly direction.  Obviously, we could 
represent this velocity as a straight line, with 
its length scaled to 13.9 m/s, and pointing 
due east.  Let’s also assume that the mass of 
the vehicle is 1050 kg.  The vehicle’s post-
impact momentum would be (1050 x 13.9) 
14,595 kg m/s in an easterly direction.  Note 
that this is scalar multiplication of a vector 
quantity (mass x velocity). 
 
Knowing the magnitude of the vehicle’s 
post-impact momentum, and also that the 
direction of this vector is the same as the 
vehicle’s post-impact velocity, we can 
represent the momentum vector on a vector 
diagram as a straight line, with its length 
scaled to 14,595 kg m/s, and aligned due 
east. 
 
We now have all the tools necessary to be 
able to conduct vector analysis, using the 
pre- and post-impact momenta of two 
vehicles in a collision.  All we have to do is 
think about how to apply these techniques to 

solve the momentum equation.  Let’s do this 
by means of  case study of a real-world 
crash. 
 
 
Graphical Analysis 
 
The driver of a 2000 Chevrolet Impala four-
door sedan (Vehicle 1) failed to bring the 
vehicle to a halt at a stop-sign controlled 
intersection.  The front of the Impala struck 
the left side of a 1998 Saturn SL2 four-door 
sedan (Vehicle 2) that was northbound along 
the intersecting road. 
 

Figure 3  2000 Chevrolet Impala 

Figure 4  1998 Saturn SL2 
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After impact, both vehicles travelled across 
the intersection to the northeast.  They ran 
off the roadway and down a steep embank-
ment.  The Saturn rolled over onto its roof.  
The two vehicles came to rest in close 
proximity to each other in the ditch. 
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where: 
 
   v = separation speed measured in km/h 

µ = coefficient of friction 
d = stopping distance measured in metres 

 
[Personally, I would use a constant of 4.43 
in equation 1 to give the speed in the basic 
units of m/s.  Then I would do all my 
momentum calculations in the units of 
kg m/s.  But, I know that it drives everyone 
mad [2] when I do that!  So, to keep the 
peace, I will stick with the units of km/h for 
speed and kg km/h for momentum.] 

 

 
In equation 1, the data from our real-world 
collision are: 
 
                           µ = 0.4  

d = 25.6 m 
                             
so that: 
 

v = 15.9 √ (0.4 x 25.6) 
 

Momen
Figure 5  Collision Schematic 
 be seen in the above diagram, both 
s travelled essentially the same 
e after the initial impact.  The 
n investigators measured the distance 

ed from each vehicle’s location at the 
f impact to its associated final resting 
n as 25.6 m.  They also estimated the 
ve coefficient of friction to be 0.4.   

gnore any effects due to the vehicles 
ing down the embankment, we can 
te the separation speed of each vehicle 
g a simple slide-to-stop calculation 

on the measured stopping distance and 
tion coefficient. 

d9.15v µ=           (1) 

                 v = 15.9 √ 10.24 = 15.9 x  3.2 
 
                 v = 51 km/h 
 
Because both vehicles came to rest after the 
crash in the same distance, and were subject 
to the same coefficient of friction, the post-
impact speeds of the two vehicles (V1 and 
V2) were the same. 
  

V1 = V2 = 51 km/h          (2) 
 
We now have a reasonable estimate of the 
speed at which each vehicle came away 
from the collision.  What we also need to 
know is the post-impact velocity of each 
vehicle.  We know the speed, which is the 
magnitude of the velocity.  What we also 
need, to fully specify velocity, is the post-
impact direction of each vehicle.   
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For the purposes of drawing a vector 
diagram, we  will use the departure angle of 
each vehicle as it came away from the point 
of impact. 

 
 
 
 
 
Figure 6 shows the convention adopted by 
the Society for Automotive Engineers for 
the measurement of angles.  A positive angle 
is measured clockwise from a datum line. 
 
In the case collision, we will assume that 
due east is our zero-degree datum line.  
Based on the physical evidence at the scene 
(scuff marks and scrapes on the roadway 
surface) the investigators estimated the 
departure angle for Vehicle 1 as 329°, and 
the departure angle for Vehicle 2 as 321°.  
 
[Note that at the collision scene, or using a 
scaled scene diagram, rather than measuring 
an obtuse angle such as Θ2

' (Figure 6), the 
investigators would probably have measured 
the acute angle Φ and then subtracted this 
angle from 360° in order to obtain Θ2

'.] 
 
We now have data for the post-impact speed 
of each vehicle, and its departure angle away 

from the crash.  This provides enough 
information to calculate the magnitude of 
the final momentum for each vehicle, and to 
draw a vector representing this momentum 
on a vector diagram. 
 
To calculate the magnitude of each final  
momentum vector, we use scalar 
multiplication of the vehicle’s mass and its 
post-impact speed. 
 
To draw the vector diagram, we will draw a 
line to a scale that represents the magnitude 
of the final momentum, and orient that line 
on the diagram in the direction of the 
vehicle’s post-impact velocity.  This will be 
the direction of the vehicle’s run out from 
the point of impact as defined by the 
measured departure angle. Figure 6  Convention for angular measure  
Thus, for the case collision: 
 
Vehicle 1 (Chevrolet Impala) 
 

m1 = 1710 kg 
V1

' = 51 km/h 
m1V1

'  = 1710 x 51 = 87,210 kg km/h  
Θ1

' = 329° 
 
Vehicle 2 (Saturn SL2) 
 

m2 = 1160 kg 
V2

' = 51 km/h 
m2V2

'  = 1160 x 51 = 59,160 kg km/h  
Θ2

' = 321° 
 
Figure 7 shows the two vectors m1V1

' (AB) 
and m2V2

' (AD) drawn to a scale of 1 cm 
being equivalent to 10,000 kg km/h.  AB is 
drawn at 31° above the horizontal axis (i.e. 
360 - 329°) to reflect Vehicle 1’s departure 
angle of 329°.  Similarly, AD is drawn at 
39° above the horizontal axis (i.e. 360 - 
321°), this being the departure angle for 
Vehicle 2. 
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While the vector diagram can be drawn by 
hand on graph paper, or with the use of a 
drafting table or tablet, it is more convenient 
to use a computer aided design (CAD) 
program.   
 
This not only makes the drafting process 
easier, but also allows direct measurements 
to be made from the drawing using an 
inquiry function.  This is extremely useful in 
 
 

 

 

Figure 7  Post-impact momentum vector diagram 

obtaining the magnitudes of the pre-impact 
momentum vectors as we will see shortly. 
 
In Figure 7, in addition to representing the 
two final momentum vectors (AB and AD), 
we have also constructed the vector 
parallelogram (ABCD) that allows us to add 
the final momenta together.  The vector AC 
thus represents the total final momentum of 
the two vehicles in the collision. 
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Figure 8  Momentum vector diagram 

y the principle of conservation of linear 
omentum, the total initial momentum of  

he vehicles must be equal to their total final 
omentum.  It follows that the vector AC 
ust also represent the sum of the two initial 
omentum vectors. 

hat we need to do next is determine where 
he two initial momentum vectors should be 
ocated on the diagram. 

 

 

Figure 8  Momentum vector diagram 

 
Referring back to the collision schematic 
(Figure 5), recall that we chose due east 
as the zero-degree reference direction for all 
of our angular measurements.  Based on the 
pre-crash motion of the two vehicles, we 
know their approach angles to the crash.  
Vehicle 1, the Chevrolet Impala, was 
travelling due east and hence had an 
approach angle of 0º.  Similarly, Vehicle 2, 
the Saturn SL2, was northbound with an 
approach angle of 270º. 
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Since the initial velocity of Vehicle 1 must 
be in the same direction as its pre-impact 
travel path, it follows that the initial velocity 
vector for Vehicle 1 must be pointing due 
east.  And, since Vehicle 1’s initial 
momentum is a scalar multiplication of the 
initial velocity vector, the initial momentum 
must also be pointing due east.  So, on our 
vector diagram, the vector representing the 
initial momentum of Vehicle 1 must lie 
somewhere along the horizontal axis (x-
axis), and be pointing due east. 
 
Applying the same logic to Vehicle 2 tells us 
that the vector representing the initial 
momentum of Vehicle 2 must lie somewhere 
along the vertical axis (y-axis) pointing 
north. 
 
Now we come to the critical step.  The 
initial momentum of Vehicle 1 must be the 
vector AE, and the initial momentum of 
Vehicle 2 must be the vector AF.  These 
vectors are both pointing in the appropriate 
directions, and are the only vectors along 
these directions that have the appropriate 
lengths that will add together (using 
parallelogram AECF) to give the resultant 
vector AC.  Note that the two initial 
momenta (m1V1 and m2V2) must add 
together to give this resultant in order to 
satisfy the equation of conservation of 
momentum.  Thus, the vector AE represents 
the initial momentum (m1V1) of Vehicle 1, 
and the vector AF represents the initial 
momentum (m2V2) of Vehicle 2. 
 
Now we use the fact that our vector diagram 
is drawn to scale and, in particular that 1 cm 
on the diagram represents a momentum of 
10,000 kg km/h. 
 
Using our CAD program, a direct 
measurement on the diagram shows the 

length of AE to be 12.0729 cm which thus 
represents a momentum of 120,729 kg km/h. 
This is the magnitude of the initial 
momentum of Vehicle 1, that is the product 
m1V1.  Consequently, we have: 
 

m1V1 = 120,729  kg km/h          (3) 
   
But, we know the mass (m1) of Vehicle 1 to 
be 1710 kg.  Consequently, equation 3 
becomes: 
 
       1710 x V1 = 120,729  kg km/h 
 
so that 
 

V1  =  120,729  =  71 km/h          (4) 
                   1710 
 
 
A similar measurement of the length of AF 
shows the initial momentum (m2V2) of 
Vehicle 2 to be 82,147 kg km/h.  Thus: 
 

m2V2 =   82,147  kg km/h 
  
where     m2 = 1160 kg 
 
so that    V2  =  82,147  =  71 km/h         (5) 
                          1160   
 
Thus, equations 4 and 5 give the two initial 
speeds of Vehicle 1 and Vehicle 2 as: 
 

V1 = 71 km/h 
 

V2 = 71 km/h 
 

 

We have solved the equation of 
conservation of momentum ! 
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Verification 
 
The speeds of both vehicles are somewhat 
below the speed limit of 80 km/h for the 
subject roadway.  However, note that these 
speeds are those immediately prior to the 
crash, i.e. at the point where the vehicles 
first made contact,  Remember that 
momentum considers the changes in 
velocity in the crash phase; it looks at the 
velocities of the vehicles just before and just 
after the impact.  Our calculated speeds do 
not include the effect of pre-impact braking 
should this have occurred for one or other of 
the vehicles.  (In such a case, we would need 
to account for this by means of separate 
calculations.)  Consequently, the travel 
speeds of the vehicles some seconds before 
impact could be different from our 
calculated values. 
 
One thing that is certain is that the Impala 
did not come to a stop at the intersection.  It 
would not be reasonable for the vehicle to 
accelerate from a stop to the impact speed in 
the available distance.  Consequently, our 
analysis supports the thesis that the driver of 
the Impala ran the stop sign. 
 
In this particular case, this scenario can be 
confirmed since the Impala is equipped with 
an event data recorder (EDR) that provides 
pre-crash data. The EDR reports that one 
second before algorithm enable (AE), the 
speed of the Impala was 72 km/h (45 mph).  
This corresponds very well to our calculated 
pre-impact speed of 71 km/h. 
 
However, we must realize that, because of 
the way in which data are stored in the 
EDR’s buffer, AE could have occurred 
almost immediately after the point at t=-1s 
was captured, or up to one second later 
(t=0s). [3]   

The agreement between the calculated and 
recorded values suggests that either the 
former was the case, or that the vehicle did 
not slow down appreciably (no or only light 
braking) up to the point when AE did occur.  
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Figure 9  Pre-crash data for Vehicle 1 

 
Note also that that five seconds before AE, 
the vehicle’s speed was 122 km/h (76 mph)!  
Over the five seconds before the crash the 
driver was braking and the vehicle’s speed 
was going down (initially at 0.3-0.5 g).  
Around three seconds to AE the driver 
released the brake, briefly applied the 
accelerator (at least 20% throttle), and then 
went back to the brakes.  At no point did the 
vehicle’s speed go down to zero!  The driver 
definitely did not stop for the traffic sign. 
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One further item to note with respect to the 
pre-impact speed recorded by the EDR.  It is 
very close to the speed obtained through our 
momentum analysis.  This should do two 
things.  Firstly, it should give us confidence 
that our graphical solution gives the correct 
answer.  Secondly, we can think of the crash 
as a real-world experiment in physics.  The 
fact that our calculated result agrees with 
experimental measurement (the EDR) 
verifies that the principle of conservation of 
linear momentum is correct.  It also verifies 
that Newton’s laws of motion are valid.  
Since momentum gives the right answer, 
and our derivation of momentum was based 
on Newton’s laws, then these laws must also 
be correct. 
 
However, we should be aware that the case 
collision is just a single “experiment” for the 
physics of momentum.  In addition, we have 
made a number of assumptions in computing 
the run-out speeds of the two vehicles (e.g. 
the estimate of the coefficient of friction, the 
vehicle braking efficiencies, the treatment of 
the travel down the embankment).  There is 
also some uncertainty in the speed of the 
Impala at impact as determined from the 
EDR.  So, the “good” agreement between 
the speeds calculated from momentum, and 
those recorded by the EDR, should be 
tempered by the knowledge of the potential 
limitations in these data.   
 
Nevertheless, the case does give us one 
point of reference.  As we continue to 
conduct more investigations and undertake 
similar reconstructions, further confirmation 
of the appropriateness of the technique will 
be achieved - which will constitute proof of 
the method - and hence of the physical laws.          
 

Conclusion 
 
So, we accomplished the seemingly 
impossible. We solved one equation in 
which there were two unknowns.  But, note 
that this was only possible because we knew 
both the approach and departure angles of 
the two vehicles and hence were able to plot 
the vehicles’ momenta in two dimensions.     
 
In particular, once we had drawn the post-
impact momentum vectors and determined 
the total momentum of the two vehicles after 
the crash, we needed the approach angles of 
both vehicles to determine the directions of 
the pre-impact momentum vectors.  This 
allowed us to construct the vector  
parallelogram (AECF) that would add the 
two initial momentum vectors to determine 
the total initial momentum of the vehicles.  
Knowing the directions in which vectors AE 
and AF must point allows only one such 
parallelogram to be drawn.  Hence we 
obtained a unique solution to the momentum 
equation. 
 
The graphical method of solving the 
momentum equation is very useful.  It’s 
relatively easy to develop the drawing and to 
take the required measurements (especially 
if you have a CAD program handy).  And 
the calculations required are very simple, 
requiring only straightforward mathematics.   
 
The other advantage is that the directions of 
the momentum vectors reflect the physical 
situation of the crash.  They are pointing in 
the directions along which the vehicles 
actually travelled, and so the arrows on the 
vector diagram look just like the vehicle 
paths on the collision schematic.  This 
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provides a double check on how the final 
momentum vectors are being added together 
to determine the resultant, and how the 
resultant is broken apart to give the initial 
momentum vectors. 
 
If we adopt a purely algebraic solution to the 
problem, using mathematics and trigono-
metrical functions (sines and cosines), the 
process is not so self-evident. 
 
However, you will get to see if this is indeed 
the case, should you continue onto the next 
page from a physicist’s notebook that will 
discuss the algebraic solution for momentum 
and take a look at some computer-based 
methods. 
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